Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Two-dimensional semimetal channel in a type II broken-gap GaInAsSb/InAs single heterojunction

Identifieur interne : 000594 ( Russie/Analysis ); précédent : 000593; suivant : 000595

Two-dimensional semimetal channel in a type II broken-gap GaInAsSb/InAs single heterojunction

Auteurs : RBID : Pascal:03-0172650

Descripteurs français

English descriptors

Abstract

High magnetic field magnetoresistance and quantum Hall effect (QHE) in type II broken-gap Ga1-xInxSb1-yAsy/p-InAs single heterostructures based on undoped or doped with Zn and Te quaternary epilayers have been investigated to determine the effect of the carrier concentration and doping type on the 2D-electron density and quantum conductivity. The two-dimensional nature of quantum oscillations was established from the angular dependence of Shubnikov-de Haas (SdH) oscillations and observation of the QHE plateaus in the Hall conductivity in high magnetic fields when the upper electronic sub-bands become empty. We have observed maxima of σxy(H) between the quantised Hall states at the filling factors v= 1, 2, and 3. The QHE plateau-to-plateau transitions from v= 3 to v= 2 and from v= 2 to v= 1 were different from the ones corresponding to one-type carrier. Doping of the epilayer alters the band bending for holes and electrons at the heteroboundary and results in changes of the electron concentration and SdH period according to the filling of the multi sub-band structure for the electron channel.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0172650

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Two-dimensional semimetal channel in a type II broken-gap GaInAsSb/InAs single heterojunction</title>
<author>
<name sortKey="Berezovets, V A" uniqKey="Berezovets V">V. A. Berezovets</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, Russian Academy of Science, Polytekhnicheskaya 26</s1>
<s2>194021 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>194021 St. Petersburg</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>International High Magnetic Fields and Low-Temperatures Laboratory, 95 Gajowicka Str.</s1>
<s2>53-421 Wrocław</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>53-421 Wrocław</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mikhailova, M P" uniqKey="Mikhailova M">M. P. Mikhailova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, Russian Academy of Science, Polytekhnicheskaya 26</s1>
<s2>194021 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>194021 St. Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moiseev, K D" uniqKey="Moiseev K">K. D. Moiseev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, Russian Academy of Science, Polytekhnicheskaya 26</s1>
<s2>194021 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>194021 St. Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parfeniev, R V" uniqKey="Parfeniev R">R. V. Parfeniev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, Russian Academy of Science, Polytekhnicheskaya 26</s1>
<s2>194021 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>194021 St. Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yakovlev, Yu P" uniqKey="Yakovlev Y">Yu. P. Yakovlev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, Russian Academy of Science, Polytekhnicheskaya 26</s1>
<s2>194021 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>194021 St. Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nizhankovskii, V I" uniqKey="Nizhankovskii V">V. I. Nizhankovskii</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>International High Magnetic Fields and Low-Temperatures Laboratory, 95 Gajowicka Str.</s1>
<s2>53-421 Wrocław</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>53-421 Wrocław</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0172650</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 03-0172650 INIST</idno>
<idno type="RBID">Pascal:03-0172650</idno>
<idno type="wicri:Area/Main/Corpus">00D895</idno>
<idno type="wicri:Area/Main/Repository">00C872</idno>
<idno type="wicri:Area/Russie/Extraction">000594</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0031-8965</idno>
<title level="j" type="abbreviated">Phys. status solidi, A, Appl. res.</title>
<title level="j" type="main">Physica status solidi. A. Applied research</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Angular variation</term>
<term>Arsenic Antimonides</term>
<term>Carrier density</term>
<term>Doping</term>
<term>Energy gap</term>
<term>Experimental study</term>
<term>Gallium antimonides</term>
<term>Heterojunctions</term>
<term>High field</term>
<term>III-V semiconductors</term>
<term>Impurity density</term>
<term>Indium antimonides</term>
<term>Indium arsenides</term>
<term>Magnetic field effects</term>
<term>Magnetoresistance</term>
<term>Quantum Hall effect</term>
<term>Quantum oscillation</term>
<term>Quaternary compounds</term>
<term>Shubnikov-de Haas effect</term>
<term>Subband</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Bande interdite</term>
<term>Champ intense</term>
<term>Effet champ magnétique</term>
<term>Magnétorésistance</term>
<term>Effet Hall quantique</term>
<term>Dopage</term>
<term>Densité porteur charge</term>
<term>Concentration impureté</term>
<term>Etude expérimentale</term>
<term>Oscillation quantique</term>
<term>Variation angulaire</term>
<term>Effet Shubnikov de Haas</term>
<term>Sous bande</term>
<term>Composé quaternaire</term>
<term>Gallium antimoniure</term>
<term>Indium antimoniure</term>
<term>Arsenic Antimoniure</term>
<term>Indium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Hétérojonction</term>
<term>As Ga In Sb</term>
<term>GaInAsSb</term>
<term>As In</term>
<term>InAs</term>
<term>7343F</term>
<term>7343Q</term>
<term>7340K</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High magnetic field magnetoresistance and quantum Hall effect (QHE) in type II broken-gap Ga
<sub>1-x</sub>
In
<sub>x</sub>
Sb
<sub>1-y</sub>
As
<sub>y</sub>
/p-InAs single heterostructures based on undoped or doped with Zn and Te quaternary epilayers have been investigated to determine the effect of the carrier concentration and doping type on the 2D-electron density and quantum conductivity. The two-dimensional nature of quantum oscillations was established from the angular dependence of Shubnikov-de Haas (SdH) oscillations and observation of the QHE plateaus in the Hall conductivity in high magnetic fields when the upper electronic sub-bands become empty. We have observed maxima of σ
<sub>xy</sub>
(H) between the quantised Hall states at the filling factors v= 1, 2, and 3. The QHE plateau-to-plateau transitions from v= 3 to v= 2 and from v= 2 to v= 1 were different from the ones corresponding to one-type carrier. Doping of the epilayer alters the band bending for holes and electrons at the heteroboundary and results in changes of the electron concentration and SdH period according to the filling of the multi sub-band structure for the electron channel.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0031-8965</s0>
</fA01>
<fA02 i1="01">
<s0>PSSABA</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. status solidi, A, Appl. res.</s0>
</fA03>
<fA05>
<s2>195</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Two-dimensional semimetal channel in a type II broken-gap GaInAsSb/InAs single heterojunction</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>6th International Workshop on Expert Evaluation & Control of Compound Semiconductor Materials & Technologies</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>BEREZOVETS (V. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MIKHAILOVA (M. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MOISEEV (K. D.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PARFENIEV (R. V.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YAKOVLEV (Yu. P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>NIZHANKOVSKII (V. I.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>PODOR (Bálint)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SOMOGYI (Károly)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, Russian Academy of Science, Polytekhnicheskaya 26</s1>
<s2>194021 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>International High Magnetic Fields and Low-Temperatures Laboratory, 95 Gajowicka Str.</s1>
<s2>53-421 Wrocław</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Research Institute for Technical Physics and Materials Science of the Hungarian Academy of Sciences (MTA MFA), POB 49</s1>
<s2>1525 Budapest</s2>
<s3>HUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>194-198</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183A</s2>
<s5>354000107683080310</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>6 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0172650</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. A. Applied research</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>High magnetic field magnetoresistance and quantum Hall effect (QHE) in type II broken-gap Ga
<sub>1-x</sub>
In
<sub>x</sub>
Sb
<sub>1-y</sub>
As
<sub>y</sub>
/p-InAs single heterostructures based on undoped or doped with Zn and Te quaternary epilayers have been investigated to determine the effect of the carrier concentration and doping type on the 2D-electron density and quantum conductivity. The two-dimensional nature of quantum oscillations was established from the angular dependence of Shubnikov-de Haas (SdH) oscillations and observation of the QHE plateaus in the Hall conductivity in high magnetic fields when the upper electronic sub-bands become empty. We have observed maxima of σ
<sub>xy</sub>
(H) between the quantised Hall states at the filling factors v= 1, 2, and 3. The QHE plateau-to-plateau transitions from v= 3 to v= 2 and from v= 2 to v= 1 were different from the ones corresponding to one-type carrier. Doping of the epilayer alters the band bending for holes and electrons at the heteroboundary and results in changes of the electron concentration and SdH period according to the filling of the multi sub-band structure for the electron channel.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C40H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C40K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Champ intense</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>High field</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Effet champ magnétique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Magnetic field effects</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Magnétorésistance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Magnetoresistance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Effet Hall quantique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Quantum Hall effect</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Doping</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Doping</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Concentration impureté</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Impurity density</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Concentración impureza</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Oscillation quantique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Quantum oscillation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Oscilación cuántica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Variation angulaire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Angular variation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Variación angular</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Effet Shubnikov de Haas</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Shubnikov-de Haas effect</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Sous bande</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Subband</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Subbanda</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Composé quaternaire</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Quaternary compounds</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gallium antimoniure</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium antimonides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Indium antimoniure</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium antimonides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Arsenic Antimoniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Arsenic Antimonides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Hétérojonction</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Heterojunctions</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>As Ga In Sb</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>GaInAsSb</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>7343F</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>7343Q</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>7340K</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fN21>
<s1>097</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>EXMATEC'02 International Workshop on Expert Evaluation and Control of Compound Semiconductor Materials and Technologies</s1>
<s2>6</s2>
<s3>Budapest HUN</s3>
<s4>2002-05-26</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000594 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000594 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:03-0172650
   |texte=   Two-dimensional semimetal channel in a type II broken-gap GaInAsSb/InAs single heterojunction
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024